A new result of exact controllability for the magnetohydrodynamic equations

Cătălin Popa
University "Al. I. Cuza" of Iaşi România

I. THE CONTROLLABILITY OF THE HEAT EQUATION

1. The control action is distributed in the entire domain Ω

Let Ω be a bounded connected open set in \mathbb{R}^{n} and let $T>0$. Consider

$$
\begin{array}{ll}
\frac{\partial y}{\partial t}-\Delta y=u & \text { in } \Omega \times(0, T) \\
y=0 & \text { on } \partial \Omega \times(0, T) \tag{1}\\
y(\cdot, 0)=y_{0} & \text { in } \Omega
\end{array}
$$

Problem 1

Let y_{0} and y_{T} be given states. Find u such that the corresponding solution y of (1) also satisfies

$$
y(\cdot, T)=y_{T} .
$$

Assume that $y_{0}, y_{T} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
Solution to Problem 1:

$$
\begin{gather*}
y=\frac{T-t}{T} y_{0}+\frac{t}{T} y_{T} \quad\left(y(\cdot, T)=y_{T}\right) \tag{2}\\
u=\frac{1}{T}\left(y_{T}-y_{0}\right)-\frac{T-t}{T} \Delta y_{0}+\frac{t}{T} \Delta y_{T} .
\end{gather*}
$$

2. The control action is distributed in an arbitrary small subregion ω of Ω

Let ω be an open subset of Ω. Consider

$$
\begin{array}{ll}
\frac{\partial y}{\partial t}-\Delta y=\chi_{\omega} u & \text { in } \Omega \times(0, T), \\
y=0 & \text { on } \partial \Omega \times(0, T), \tag{4}\\
y(\cdot, 0)=y_{0} & \text { in } \Omega,
\end{array}
$$

where

$$
\chi_{\omega}(x)=\left\{\begin{array}{l}
1 \text { for } x \in \omega, \\
0 \text { for } x \in \Omega \backslash \omega .
\end{array}\right.
$$

Let \widetilde{y} satisfy

$$
\begin{array}{ll}
\frac{\partial \widetilde{y}}{\partial t}-\Delta \widetilde{y}=0 & \text { in } \Omega \times(0, T) \tag{5}\\
\widetilde{y}=0 & \text { on } \partial \Omega \times(0, T)
\end{array}
$$

Problem 2

Find $u \in L^{2}(\Omega \times(0, T))$ such that the corresponding weak solution y of (4) also satisfies

$$
\begin{equation*}
y(\cdot, T)=\widetilde{y}(\cdot, T) . \tag{6}
\end{equation*}
$$

II. THE RELATIONSHIP BETWEEN CONTROLLABILITY AND OBSERVABILITY

Consider the (homogeneous) adjoint of equation (4):

$$
\begin{array}{ll}
\frac{\partial z}{\partial t}+\Delta z=0 & \text { in } \Omega \times(0, T) \tag{7}\\
z=0 & \text { on } \partial \Omega \times(0, T)
\end{array}
$$

Theorem 1

If the controlled heat equation (4) is globally exactly controllable, then there exists a constant $c>0$ such that

$$
\begin{equation*}
\int_{\Omega} z^{2}(x, 0) d x \leq c \int_{0}^{T} \int_{\omega} z^{2} d x d t \tag{8}
\end{equation*}
$$

for all the solutions z of (7).

Theorem 2

If there exists a constant $c>0$ such that inequality (8) holds for all the solutions z of (7), then the controlled heat equation (4) is globally exactly controllable.

III. THE OBSERVABILITY INEQUALITY AND CARLEMAN ESTIMATES

Let z be an arbitrary solution of the adjoint heat equation (7).
The energy estimate for z :

$$
\begin{align*}
& \int_{\Omega} z^{2}(x, 0) d x+\int_{\Omega \times(0, T)}|\nabla z(x, t)|^{2} d x d t \tag{9}\\
& \leq c \int_{\Omega} z^{2}(x, T) d x .
\end{align*}
$$

Weighted variant for (9).
Let $\rho \in C([0, T]) \cap C^{1}([0, T))$ with $\rho^{\prime}(0) \neq 0$ and $\rho(T)=0$. Set

$$
w=\rho z .
$$

We have

$$
\begin{array}{ll}
\frac{\partial w}{\partial t}+\Delta w=\rho^{\prime} z & \text { in } Q=\Omega \times(0, T) \\
w=0 & \text { on } \Sigma=\partial \Omega \times(0, T), \\
w(\cdot, T)=0 & \text { in } \Omega
\end{array}
$$

The energy estimate for w :

$$
\begin{align*}
& \int_{\Omega} \rho^{2}(0) z^{2}(x, 0) d x+\int_{Q} \rho^{2}(t) z^{2}(x, t) d x d t \tag{10}\\
& \leq c \int_{Q}\left(\rho^{\prime}(t)\right)^{2} z^{2}(x, t) d x d t
\end{align*}
$$

Take

$$
\begin{align*}
\rho(t) & =e^{\alpha(t)} \\
\alpha(t) & =-\frac{1}{T-t} \tag{11}
\end{align*}
$$

Inequality (10) becomes

$$
\begin{align*}
& \int_{\Omega} e^{2 \alpha(0)} z^{2}(x, 0) d x+\int_{Q} e^{2 \alpha} z^{2} d x d t \\
& \leq c \int_{Q} e^{2 \alpha}\left(\alpha^{\prime}\right)^{2} z^{2} d x d t=c \int_{Q} e^{2 \alpha} \alpha^{4} z^{2} d x d t \tag{12}
\end{align*}
$$

Take

$$
\begin{align*}
& \rho(x, t)=e^{s \alpha(x, t)} \\
& \alpha(x, t)=-\frac{\beta(x)}{t(T-t)} \tag{13}\\
& \beta(x)=\gamma-e^{\lambda \psi(x)}
\end{align*}
$$

with $\psi=0$ on $\partial \Omega$ and $\nabla \psi \neq 0$ in $\bar{\Omega} \backslash \omega$. We can obtain

$$
\begin{align*}
& \int_{Q} e^{2 s \alpha} \varphi|\nabla z|^{2} d x d t+s^{2} \int_{Q} e^{2 s \alpha} \varphi^{3} z^{2} d x d t \tag{14}\\
& \leq c s^{2} \int_{Q_{\omega}} e^{2 s \alpha} \varphi^{3} z^{2} d x d t
\end{align*}
$$

for s and λ large enough, where $Q=\Omega \times(0, T), Q_{\omega}=\omega \times(0, T)$, and

$$
\begin{equation*}
\varphi=\frac{e^{\lambda \psi}}{t(T-t)}, \text { with } \psi \text { in (13) } \tag{15}
\end{equation*}
$$

IV. THE CONTROLLABILITY OF THE NAVIER-STOKES EQUATIONS

Consider

$$
\begin{array}{ll}
\frac{\partial y}{\partial t}-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f+\chi_{\omega} u & \text { in } Q=\Omega \times(0, T), \\
\operatorname{div} y=0 & \text { in } Q \tag{16}\\
y=0 & \text { on } \Sigma=\partial \Omega \times(0, T), \\
y(\cdot, 0)=y_{0} & \text { in } \Omega .
\end{array}
$$

Let \widetilde{y} satisfy

$$
\begin{array}{ll}
\frac{\partial \widetilde{y}}{\partial t}-\nu \Delta \widetilde{y}+(\widetilde{y} \cdot \nabla) \widetilde{y}+\nabla \widetilde{p}=f & \text { in } Q, \tag{17}\\
\operatorname{div} \widetilde{y}=0 & \text { in } Q, \\
\widetilde{y}=0 & \text { on } \Sigma .
\end{array}
$$

Problem 3.

Find $u \in\left(L^{2}(Q)\right)^{n}$ and a corresponding weak solution y of system (16) which also satisfies

$$
\begin{equation*}
y(\cdot, T)=\widetilde{y}(\cdot, T) \text { a.e. in } \Omega . \tag{18}
\end{equation*}
$$

Set

$$
H=\left\{y \in\left(L^{2}(\Omega)\right)^{n}: \operatorname{div} y=0 \text { in } \Omega, y \cdot N=0 \text { on } \partial \Omega\right\} .
$$

Theorem 3 (E. Fernandez-Cara, S. Guerrero, O. Imanuvilov, J.P. Puel)

Let $n=2$ or 3 and $f \in\left(L^{2}(Q)\right)$. If \widetilde{y} is a weak solution of (17) which satisfies

$$
\begin{equation*}
\widetilde{y} \in\left(L^{\infty}(Q)\right)^{n} \text { and } \frac{\partial \widetilde{y}}{\partial t} \in L^{2}\left(0, T ;\left(L^{\infty}(\Omega)\right)^{n}\right) \tag{19}
\end{equation*}
$$

then there exists $r>0$ such that, for any $y_{0} \in H \cap\left(L^{2 n-2}(\Omega)\right)^{n}$ satisfying

$$
\left|y_{0}-\widetilde{y}(\cdot, 0)\right|_{\left(L^{2 n-2}(\Omega)\right)^{n}} \leq r,
$$

Problem 3 is solvable.

The second condition in (19) can be replaced by

$$
\frac{\partial \widetilde{y}}{\partial t} \in L^{2}\left(0, T ;\left(L^{\sigma}(\Omega)\right)^{n}\right) \text { for } \sigma>\left\{\begin{array}{l}
1 \text { when } n=2 \tag{20}\\
\frac{6}{5} \text { when } n=3
\end{array}\right.
$$

The linearized Navier-Stokes system around \widetilde{y} :

$$
\begin{array}{ll}
\frac{\partial y}{\partial t}-\nu \Delta y+(\widetilde{y} \cdot \nabla) y+(y \cdot \nabla) \widetilde{y}+\nabla p=f+\chi_{\omega} u & \text { in } Q, \tag{21}\\
\text { div } y=0 & \text { in } Q, \\
y=0 & \text { on } \Sigma, \\
y(\cdot, 0)=y_{0} & \text { in } \Omega .
\end{array}
$$

The adjoint of system (21):

$$
\begin{array}{ll}
\frac{\partial z}{\partial t}+\nu \Delta z+\left(\nabla z+{ }^{t} \nabla z\right) \widetilde{y}+\nabla q=h & \text { in } Q \tag{22}\\
\text { div } z=0 & \text { in } Q, \\
z=0 & \text { on } \Sigma .
\end{array}
$$

The equation of q :

$$
\begin{equation*}
\Delta q=\operatorname{div} h-\operatorname{div}\left(\left(\nabla z+{ }^{t} \nabla z\right) \widetilde{y}\right) \text { in } Q . \tag{23}
\end{equation*}
$$

V. THE CONTROLLABILITY OF THE MAGNETOHYDRODYNAMIC (MHD) EQUATIONS

Let $n=3$. Consider

$$
\begin{array}{ll}
\frac{\partial y}{\partial t}-\nu \Delta y+(y \cdot \nabla) y-(B \cdot \nabla) B+\nabla p+\nabla\left(\frac{1}{2} B^{2}\right)=f+\chi_{\omega} u & \text { in } Q \\
\frac{\partial B}{\partial t}+\eta \operatorname{curl}(\operatorname{curl} B)+(y \cdot \nabla) B-(B \cdot \nabla) y=P\left(\chi_{\omega} v\right) & \text { in } Q \tag{24}\\
\operatorname{div} y=0, \operatorname{div} B=0 & \text { in } Q \\
y=0, B \cdot N=0,(\operatorname{curl} B) \times N=0 & \text { on } \Sigma \\
y(\cdot, 0)=y_{0}, B(\cdot, 0)=B_{0} & \text { in } \Omega
\end{array}
$$

Let $(\widetilde{y}, \widetilde{B})$ satisfy

$$
\begin{array}{ll}
\frac{\partial \widetilde{y}}{\partial t}-\nu \Delta \widetilde{y}+(\widetilde{y} \cdot \nabla) \widetilde{y}-(\widetilde{B} \cdot \nabla) \widetilde{B}+\nabla \widetilde{p}+\nabla\left(\frac{1}{2} \widetilde{B}^{2}\right)=f & \text { in } Q \\
\frac{\partial \widetilde{B}}{\partial t}+\eta \operatorname{curl}(\operatorname{curl} \widetilde{B})+(\widetilde{y} \cdot \nabla) \widetilde{B}-(\widetilde{B} \cdot \nabla) \widetilde{y}=0 & \text { in } Q, \tag{25}\\
\operatorname{div} \widetilde{y}=0, \operatorname{div} \widetilde{B}=0 & \text { in } Q \\
\widetilde{y}=0, \widetilde{B} \cdot N=0,(\operatorname{curl} \widetilde{B}) \times N=0 & \text { on } \Sigma .
\end{array}
$$

Problem 4.

Find $(u, v) \in\left(L^{2}(Q)\right)^{6}$ and a corresponding weak solution (y, B) of system (24) which also satisfy

$$
\begin{equation*}
y(\cdot, T)=\widetilde{y}(\cdot, T) \text { and } B(\cdot, T)=\widetilde{B}(\cdot, T) \text { a.e. in } \Omega . \tag{26}
\end{equation*}
$$

Theorem 4 (T. Havârneanu, C. Popa, S.S. Sritharan)

Let $f \in\left(L^{2}(Q)\right)^{3}$. If $(\widetilde{y}, \widetilde{B})$ is a weak solution of (25) which satisfies

$$
\begin{equation*}
(\widetilde{y}, \widetilde{B}) \in\left(L^{\infty}(Q)\right)^{6} \text { and }\left(\frac{\partial \widetilde{y}}{\partial t}, \frac{\partial \widetilde{B}}{\partial t}\right) \in L^{2}\left(0, T ;\left(L^{\infty}(\Omega)\right)^{6}\right) \tag{27}
\end{equation*}
$$

then there exists $r>0$ such that, for any $\left(y_{0}, B_{0}\right) \in\left(H \cap\left(L^{4}(\Omega)\right)^{3}\right)^{2}$ satisfying

$$
\left|y_{0}-\widetilde{y}(\cdot, 0)\right|_{\left(L^{4}(\Omega)\right)^{3}}+\left|B_{0}-\widetilde{B}(\cdot, 0)\right|_{\left(L^{4}(\Omega)\right)^{3}} \leq r
$$

Problem 4 is solvable.

